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Introduction

Air travel is an essential component of tourism, commerce, and trade. It serves an

intermediary role in business endeavors and connects people globally. The onset of the

COVID-19 pandemic in March 2020 severely disrupted the intricate web of the air travel

industry. Travel from and within the United States was impacted at a rate only before seen

following the September 11 attacks; the Bureau of Transportation Statistics (2020) reported that

17% of US flights were canceled in March 2020, compared to 20% in September 2001. Many

countries limited entry to international arrivals from 2020 onward, with Connor (2020) finding

that 91% of the world’s population resided in countries with limited entry in 2020. Meanwhile,

domestic movement in the US was also stifled. Between March and May 2020, 42 states issued

stay-at-home orders, and while essential business travel remained, domestic traveler spending

decreased by 37.1% relative to pre-pandemic levels. Additionally, according to the World Travel

and Tourism Organization (2021) travel and tourism contribution to US GDP dropped by roughly

$766 billion in 2020.

This paper aims to bring an empirical understanding, three years into the pandemic, of the

extent of COVID-19’s continued impact on domestic air travel in the United States. Although the

COVID-19 pandemic affected global air travel, this paper focuses solely on domestic air travel,

specifically on a 10-month period starting with the beginning of the Omicron period of the

pandemic (November 2021). This paper incorporates runway capacity, the traditional estimator

of flight capacity, at the 30 major US hub airports (deemed so by the Bureau of Transportation

Statistics) alongside COVID-19 related data.
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Literature Review

The emerging literature surrounding COVID-19 and air travel centers around several

categories–international travel demand, the disease spread on airplanes and in airports, the

effectiveness of government subsidies on the air travel industry, and recovery of the industry

since March 2020. Literature relevant to this paper focuses on recovery of the air travel industry

since March 2020, as well as traditional airport capacity predictors. Previous literature addresses

such traditional airport capacity predictors, and several qualitative characteristics of the

pandemic and travel demand, but lacks empirical analysis of COVID-related predictors on US

flights. This paper aims to fill the gap between traditional empirical studies and preliminary

COVID-related studies.

COVID-19 and Air Travel

The initial shock of COVID-19 triggered lockdowns, phobias among travelers, and a shift

from the necessity of in-person business communication to remote means. Largely due to this

shift, Hall et al. (2020) predicted that the post-pandemic aviation industry was likely to transform

drastically from the traditional model. Hall et al. also predicted an increased focus on leisure

travel and tourism for airline marketing efforts, as well as space inside aircrafts for comfort and

physical distancing. Dube (2023) found that impacts on the value chain of airlines were felt most

severely in 2020, with recovery in 2022 (as measured by number of commercial flights)

approaching baseline 2019 levels. Dube also found that globally, despite initial recovery

beginning in June/July 2020, the Delta variant soon caused a slump in the first months of 2021

(depicted in Figure 1: 2021 7-day moving average). The Omicron variant similarly caused a

slump in recovery in the final months of 2021 and first months of 2022 (depicted in Figure 1:

2021 and 2022 7-day moving averages). Overall, Dube points to the initial onset of the pandemic
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as the largest inhibitor of air travel, while also recognizing the impacts of subsequent variants

and the risks associated with further viral evolution. My paper focuses specifically on the period

of time in which the Omicron variant accounts for the majority of COVID-19 cases in the United

States, rather than globally.

Figure 1: Global Traffic evolution impact and recovery from COVID-19 (Dube 2023)

DeLaura et al. (2021) argued that the traditional drivers of air travel demand surrounding

price and service quality are beginning to be overtaken by other considerations, including the

current COVID-19 infection rate, vaccine status, government guidelines regarding travel, and use

of personal protective equipment. The model I estimate includes these COVID-related variables.
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A common method of disease spread mitigation–social distancing–was implemented on

aircrafts in 2020 by omitting middle seats. Pearce (2020) found that passenger load factor, a ratio

of filled passenger seats relative to total available seats, falls to a maximum of 62% with the

omission of the middle seat. Average break-even load factors differ slightly by region, ranging

from 75% in North America, Africa, and the Middle East, to 81% in the Asia Pacific region. In

the 2019 sample, 97% of airlines that would not break even with 62% load factors would become

loss-making. Thus, a mere 3% of sampled airlines (all budget airlines) functioned at break even

revenue with passenger load factors below 62%. Airlines set specific benchmarks for load factor

according to revenue goals, with most airlines aiming for load factors above 70% to break even.

The implementation of social distancing thus marked a significant threat to airline revenue. As of

April 2021, passenger airlines abandoned the policy of middle seat vacancy. However, phobias

surrounding disease spread continued beyond the removal of travel restrictions or loosening of

policies. A study by Zheng et al. (2021) found that 45.1% of respondents chose to resume travel

four to six months after the removal of national travel restrictions following the pandemic

outbreak.

The lag of policy change to societal behavior change is of particular interest in the period

of study in my paper–beginning with November 2021–as at that point, all but 10 US states had

removed mask mandates at the state level. The 10 states that remained include several places of

study in my paper: California, the District of Columbia, Illinois, and Washington. Between

November 2021 and August 2022, the remaining 10 states ultimately eased their mask mandates,

though certain requirements remain now in 2023 (such as in healthcare facilities). Not only did

mask requirements differ from state-to-state, but they also varied by county. For example, in the

state of California, the indoor mask mandate was lifted on March 1, 2022. Los Angeles County
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maintained its mask mandate for public transport and transportation hubs (including airports)

until September 23, 2022. Meanwhile, the mask mandate for patrons of the San Francisco Bay

Area’s BART rail line ended on October 1, 2022.

In April 2022 the Biden administration extended its nationwide mask mandate on public

transportation and in transportation hubs to May 3, to allow for more time to study an emerging

Omicron subvariant. However, Shepardson et al. (2022) reported that on April 18, a federal court

ruling in Florida deemed the then 14-month long national mask mandate an unlawful overstep of

the federal government. Judge Kathryn Kimball Mizelle’s ruling stated that “the US CDC had

exceeded its authority with the mandate, had not sought public comment and did not adequately

explain its decisions”. At that point, TSA stopped enforcing mask-wearing in airports and aboard

planes.

The efficacy of face masks in mitigating disease spread is widely accepted as strong.

Hansen and Mano (2023) find that state mask mandates reduced weekly new COVID-19 cases

by 55, hospital admissions by 11, and deaths by 0.7 per 100,000 people on average. However,

human behavior under a mask mandate lends itself to risk compensation. Yan et al. (2021) find

that Americans subject to local mask orders spend 11-24 fewer minutes at home per day on

average and increase their attendance at commercial locations, including hotels and restaurants.

They conclude that the net change in COVID-19 transmission with the imposition of a mask

mandate is ambiguous due to this risk compensation. Trogen and Caplan (2021) find additional

evidence of risk compensation relating to vaccination against COVID-19. Due to the view of the

COVID-19 vaccine rollout as the panacea of the pandemic, individuals were less likely to adhere

to other mitigation techniques like masking and social distancing. This is an example of the

Peltzman effect–when safety measures are implemented, people’s risk perception decreases, and
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thus they make riskier decisions. The Peltzman effect is seen anywhere from contagious disease

spread mitigation to automobile safety regulation. My paper explores the role of mask mandates

and vaccine distribution in air travel with increases in air travel frequency representing a

departure from strict adherence to COVID-19 mitigation.

Traditional Airport Capacity Predictors

DeLaura et al. (2021) indicate that air travel demand is based heavily on the current

COVID-19 infection rate, vaccine status, government guidelines regarding travel, and use of

personal protective equipment. Traditional airport capacity predictors, rather, base estimates off

the number of flights facilitated at an airport on runway capacity, meteorological conditions,

runway configurations, and the ratio of arrivals to departures.

Hockaday and Kanafani (1974) were the pioneers of total airport capacity research,

focusing on New York’s LaGuardia Airport. They define capacity of a runway system as “the

maximum flow rate of operations that can be accommodated under specified [meteorological]

conditions”. They also argue that physical airport capacity, defined as the number of flights an

airport can support via landing strips, is the most accurate determinant of the true ability of an

airport system to handle air traffic. This statistic is more accurate than other measures such as

average delay, average fare, or revenue. The Federal Aviation Administration’s Airport Capacity

Profiles report (2014) measures the runway capacity of 30 core US hub airports under three

different meteorological conditions–visual, marginal, and instrument. Visual conditions exist in

the clearest weather, allowing pilots high visibility and ceiling, which is a measure of each

aircraft’s specific performance capability. Marginal conditions have slightly lower ceiling and

visibility, but higher than instrument conditions, which require radar separation between each

aircraft due to low visibility. Each of these conditions produce a unique capacity range at each
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airport, measured in arrivals and departures per hour. These measurements serve as controls in

my study.

Data and Methods

In accordance with existing literature, this paper aims to assess the correlation between

COVID-related factors at the local level and air travel demand. The chosen period of study is

November 2021, marking the onset of the Omicron variant, to August 2022, through which the

Bureau of Transportation Statistics database is most recently updated. The dependent variable in

the regressions is number of flights, measured in total number of originating flights that depart

per month and labeled totalflights. The below variables are part of a panel regression of the 30

core US hub airports (as designated by the Bureau of Transportation Statistics) over the

10-month period.

Data in this study come from several sources, including Covid Act Now: US COVID

Tracker, the Federal Aviation Administration, the US Census Bureau, the Bureau of

Transportation Statistics, and individual airports’ audited financial statements. From these data

sources and in line with previous literature regarding traditional estimators of air traffic capacity

(Hockaday and Kanafani 1974), I identify visual capacity as a control variable. Visual capacity

data come from the Federal Aviation Administration’s Airport Capacity Profiles. Visual capacity

is measured in arrivals and departures per hour and is labeled visualcap.

I use Covid Act Now: US COVID Tracker data at the county level to identify the

following COVID-related independent variables: the average daily number of new COVID cases

per month labeled cases, the average daily COVID infection rate per month as a percentage of

the US Census Bureau’s measurement of county population labeled caserate, the percentage of
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COVID cases resulting in death per month (labeled deathrate), as well as the absolute number of

new COVID-related deaths each month (labeled deaths), the ratio of the number of those eligible

who have received at least one dose of the COVID-19 vaccine (marking the decision to be

vaccinated, and labeled vax) to population, labeled vaxratio, and a dummy variable representing

the presence (denoted by 1) or lack of (denoted by 0) a mask mandate at several different

levels–the county level, the state level, and the FAA (national) level. County mask mandate data

are labeled countymask, state mask mandate data are labeled statemask, and FAA mask mandate

data are labeled faamask. I also control for the CDC Transmission Level in each county on the

majority of days out of the month, labeled cdctransmit. The CDC Transmission Level is reported

on an integer scale from 1-3 by the CDC and describes the amount of COVID-19 spread within

each county. It informs healthcare facilities on which infection control interventions are most

appropriate. I use county-level data for the COVID statistics in accordance with the CDC’s

“Community Level” information. It allows for greater specificity of COVID landscapes than

would state-level data, as different regions within states have varying rates of disease spread, risk

level, and vaccination. See Table 1 for variable descriptions and Tables 2 and 3 for summary

statistics.
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Regression Results

Model 1: totalflightsi = β0 + β1(visualcapi) + εi

Model 1 defines the relationship between total monthly flights and the visual landing

capacity at each airport. The regression coefficient for visual capacity is 84.86525, meaning that

a unit increase in visual capacity corresponds with approximately 85 additional monthly flights,

and is statistically significant at the 5% level (p<0.05). The regression yields an R-squared value

of 0.5818, meaning that 58.18% of the variation in total monthly flights can be explained by

visual capacity.

Model 2: totalflightsi = β0 + β1(caseratei) + β2(visualcapi) + εi

Model 2 defines the relationship between total monthly flights and the per capita case rate

at the county level, while controlling for visual capacity. The addition of the independent

variable caserate in Model 2 leads to a slight increase in overall R-squared of 0.5882. This

implies that the COVID case rate and airport visual capacity explain 58.82% of the variation in

total monthly flights at each airport. Additionally, 18.97% of the variation from month-to-month

within each airport is explained by the model, while 60.21% of cross-airport total flight variation

is explained by the model. Both caserate and visualcap are statistically significant at the 5%

level (p<0.05). The coefficient on caserate of -43,277.92 implies that a single percentage point

increase (0.01) in the COVID case rate is associated with 433 fewer total monthly flights.

Model 3: totalflightsi = β0 + β1(caseratei) + β2(deathsi) + β3(statemaski) + β4(countymaski) +

β5(faamaski) + β6(vaxi) + β7(cdctransmiti) + β8(visualcapi) + εi
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Model 3 implements the remaining COVID-related independent variables–deaths,

various mask mandates, vaccination, and the CDC transmission level by county each month. In

this model, several variables emerge as statistically significant at the 5% level (p<0.05). These

include caserate, statemask, countymask, faamask, and visualcap. In this model, COVID deaths,

vaccinations, and the CDC Transmission Level are not statistically significant. The coefficient on

caserate implies that a 1% increase (0.01) in COVID cases is associated with approximately 295

fewer total monthly flights. Each mask mandate dummy variable is statistically significant, with

the coefficient on statemask denoting that the presence of a statewide mask mandate is associated

with approximately 573 fewer total monthly flights. The coefficient on countymask implies that

the presence of a county-level mask mandate is associated with approximately 443 fewer total

monthly flights. The coefficient on faamask, representing the FAA mask mandate, which

presided over all US air travel for six of the ten months studied, is -664.94. This implies that the

presence of the Federal Aviation Administration mask mandate is associated with approximately

665 fewer total monthly flights. The coefficient on visualcap, similar to Models 1 and 2, implies

that a unit increase in visual capacity corresponds with an approximate 85 total flight increase

per month.

The model yields an overall R-squared value of 0.6206. This indicates that 62.06% of the

variation in total monthly flights can be explained by the regressors in the model. Additionally,

48.82% of the variation in total flights within each airport and 62.15% of the variation between

airports can be explained by the model. See Table 4 for a summary of all variable coefficients,

significance levels, and robust standard errors.
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Conclusion

My study focused on the 10-month time period of November 2021-August 2022, a time

in which the Omicron COVID-19 variant emerged and spiked in the United States. I further

focused on the 30 airports deemed Core Hub Airports by the Bureau of Transportation Statistics.

I ran several panel regressions to determine whether there was a relationship between various

COVID-related statistics and the number of passenger flights in the Omicron period. My results

demonstrate statistically significant correlations between flights and COVID case rates, state

mask mandates, county mask mandates, the Federal Aviation Administration mask mandate, and

visual capacity.

I faced several limitations in this study that serve as potential avenues for further

analysis. First, I chose to evaluate COVID-19 statistics at the county level due to the CDC’s

classification of counties as “Community Level”. However, large core airports serve a wider

customer base than the county they are in. COVID-specific data were accessible at only the

county and state levels. The most accurate sample area would be the precise geographic region of

residents that patronize each airport. However, that exact area would vary depending on an

airport’s proximity to other airports.

Ultimately, Model 3 yielded an overall R-squared of 0.6206. The model has substantial

explanatory power, but based on the results of Model 1 (R-squared of 0.5818) much of that

explanatory power comes from the visual capacity control variable.

This paper adds to a growing group of literature surrounding the COVID-19 pandemic

and air travel, with specific focus on the Omicron period. Though COVID-19 vaccinations were

readily available worldwide in the period studied, there was still a significant average decline in

flights from the 30 US Core airports as Omicron infections spiked, correlated with increases in
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cases as well as government-imposed mask mandates for disease spread mitigation. For the

aviation industry to continue recovering in the coming years, it must anticipate that regardless of

vaccination availability and uptake, spikes in COVID-19 cases impact the number of passenger

flights that leave the ground.
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Table 1: Variables

Variables Description Months Unit Source

totalflights Monthly total number of
monthly flights originating at
each core airport

11/2021-0
8/2022

Flights US Bureau of
Transportation
Statistics

visualcap Hourly arrivals and departures
per hour under clear weather
conditions at each core airport

11/2021-0
8/2022

Flights Federal Aviation
Administration

cases Average daily number of new
COVID cases each month by
county

11/2021-0
8/2022

COVID Cases Covid Act Now: US
COVID Tracker

caserate Average daily COVID
infection rate by county
population each month

11/2021-0
8/2022

Percentage Covid Act Now: US
COVID Tracker; US
Census Bureau

deaths Number of new COVID-related
deaths by county per month

11/2021-0
8/2022

Deaths Covid Act Now: US
COVID Tracker

deathrate Percentage of COVID cases
resulting in death per month

11/2021-0
8/2022

Percentage Covid Act Now: US
COVID Tracker

statemask Presence or lack of state mask
mandate for >15 days out of
the month

11/2021-0
8/2022

Dummy AARP

countymask Presence or lack of county
mask mandate for >15 days out
of the month

11/2021-0
8/2022

Dummy Covid Act Now: US
COVID Tracker

faamask Presence or lack of FAA mask
mandate for >15 days out of
the month

11/2021-0
8/2022

Dummy Federal Aviation
Administration

vax Number of eligible individuals
who have received at least one
dose of the COVID-19 vaccine
by county

11/2021-0
8/2022

Individuals Covid Act Now: US
COVID Tracker

vaxratio Ratio of those who have
received at least one
COVID-19 vaccine to the total
eligible population by county

11/2021-0
8/2022

Percentage Covid Act Now: US
COVID Tracker

cdctransmit Amount of COVID-19 spread
within each county on an
integer scale

11/2021-0
8/2022

Integer Scale
(1-3)

Covid Act Now: US
COVID Tracker; CDC
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Table 2: Summary Statistics

Variable Observations Mean Standard Deviation Minimum Maximum

totalflights 300 13889.09 6193.06 4471 30042

visualcap 300 134.15 55.66 43.5 264

cases 300 34561.07 73502.9 799 971512

caserate 300 .0081 .0122 .0004 .0968

deaths 300 158.10 242.71 0 1775

deathrate 300 .0118 .0051 .0045 .0332

statemask 300 .16 .3672 0 1

countymask 300 .2533 .4356 0 1

faamask 300 .6 .4907 0 1

vax 243 1767235 1655388 165291 8229922

vaxratio 243 .7732 .1118 .331 .95

cdctransmit 300 2.683 .5810 1 3
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Table 3: Panel Summary Statistics

Variable Observations Mean Std. Dev. Minimum Maximum

totalflights N=300
n=30
T=10

overall
between
within

13889.09 6193.062
6181.385
1137.812

4471
6104.6
8331.793

30042
28449.4
16628.89

visualcap N=300
n=30
T=10

overall
between
within

134.15 55.66024
56.51734
0

43.5
43.5
134.15

264
264
134.15

cases N=300
n=30
T=10

overall
between
within

34561.07 73502.9
35744.62
64524.86

799
3939.3
-115699.5

971512
184727.6
821345.5

caserate N=300
n=30
T=10

overall
between
within

.0080694 .0122503
.0044332
.0114459

.0004003

.0019257
-.0068982

.0967728

.0184008

.0864413

deaths N=300
n=30
T=10

overall
between
within

158.0967 242.7129
161.1227
183.6586

0
5.8
-327.7033

1775
662.8
1270.297

deathrate N=300
n=30
T=10

overall
between
within

.0117555 .0051072
.0043683
.0027526

.0044569

.0049824

.0052442

.0331998

.0214273

.023528

statemask N=300
n=30
T=10

overall
between
within

.16 .3672186 0
0
-.34

1
.5
.96

countymask N=300
n=30
T=10

overall
between
within

.2533333 .4356469
.2029665
.3870824

0
0
-.3466667

1
.6
1.05333

faamask N=300
n=30
T=10

overall
between
within

.6 .4907165
0
.4907165

0
.6
0

1
.6
1

vax N=243
n=29
T=8.3798

overall
between
within

1767235 1655388
1599055
125636.1

165291
216190.4
1008237

8229922
7913906
2083251

vaxratio N=243
n=29
T=8.3798

overall
between
within

.7731728 .1118221
.1036734
.0488616

.331

.5335

.5678729

.95

.942375

.8896728

cdctransmit N=300
n=30
T=10

overall
between
within

2.683333 .5809595
.1821014
.5525859

1
2.2
.8833333

3
3
3.483333
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Table 4: Regression Results

Independent
Variables

Model 1 Model 2 Model 3

visualcap
84.86525
(0.000)

84.71937
(0.000)

85.32594
(0.000)

caserate –
-43277.92
(0.000)

-29511.53
(0.000)

deaths – –
-.2629377
(0.420)

statemask – –
-572.8928
(0.026)

countymask – –
-443.353
(0.035)

faamask – –
-664.94
(0.000)

vax – –
-.0000893
(0.794)

cdctransmit – –
-126.9289
(0.237)

Number of
Observations

N=300
n=30
T=10

N=300
n=30
T=10

N=300
n=30
T=10

R-Squared
Within = .0000
Between = .6021
Overall = .5818

Within = .1897
Between = .6021
Overall = .5882

Within = .4882
Between = .6215
Overall = .6206

P-values in parentheses


